

Microprocessor Reset Circuit

SOT-23

Pin Definition:

TS803 TS803R
1. Ground 1. Reset
2. Reset 2. Ground
3. Vcc 3. Vcc

General Description

The TS803/TS803R are microprocessor (μP) supervisory circuit used to monitor the power supplies in μP and digital systems. They provide excellent circuit reliability and low cost by eliminating external components and adjustments when used with +5V, +3.3V, +3.0V powered circuits. These circuits perform a single function: they assert a reset signal whenever the VCC supply voltage declines below a preset threshold, keeping it asserted for at least 140ms after VCC has risen above the reset threshold. Reset thresholds suitable for operation with a variety of supply voltages are available. The TS803/TS803R are open –drain outputs. The TS803/TS803R have an active low RESET output, while the TS803/TS803R has an active high RESET output. The reset comparator is designed to ignore fast transients on VCC, and the output guaranteed to be in the correct logic state for VCC down to 1V. Low supply correct makes the TS803/TS803R ideal for use in portable equipment.

Features

- Precision monitoring of +3V, +3.3V & +5V power supply voltage
- Fully specified over temperature
- Available in three output configurations
- Open-Drain RESET low output
- 3uA supply current
- Guaranteed reset valid to Vcc = +1V
- Power supply transient immunity
- No external components

Applications

- Computers
- Controllers
- Intelligent Instruments
- Critical uP and uC power monitoring
- Portable / Battery Power Equipment
- Automotive

Ordering Information

Part No.	Package	Packing
TS803CX <u>x</u> RF	SOT-23	3Kpcs / 7" Reel
TS803RCXx RF	SOT-23	3Kpcs / 7" Reel

Note: \mathbf{x} is the threshold voltage type, option as

TS803 Threshold Voltage

A:4.63V **B**:4.38V **C**:4.00V **D**:3.08V **E**:2.93V **F**:2.63V **G**:2.32V **H**:2.1V

I : 2.0V J : 1.8V K :1.6V

TS803R Threshold Voltage

B: 4.20V **E**: 2.93V **F**: 2.70V Contact factory for additional voltage options.

Absolute Maximum Rating

Parameter	Symbol	Value	Unit
Supply Voltage	V _{CC}	7	V
RESET & (RESET) Open Drain	V_{RESET}	- 0.3 ~ (V _{CC} +0.3)	V
Input Current, V _{CC}	I _{cc}	20	mA
Output Current, RESET	Io	20	mA
Rate of Rise, V _{CC}	V_R	100	V/uS
ESD Classification		В	

Note: Stress above the listed absolute maximum rating may cause permanent damage to the device

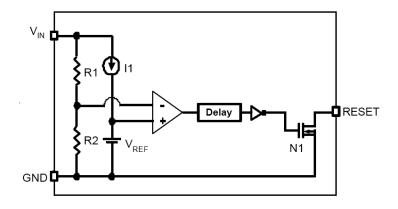
HBM B: 2000V~3999V

Microprocessor Reset Circuit

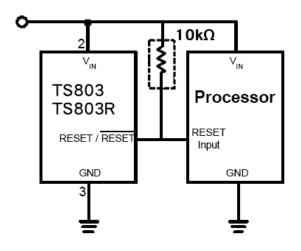
Recommended Operating Conditions

Parameter	Symbol	Value	Unit
Supply Voltage	V _{CC}	<5	V
Operating Ambient Temperature Range	T _A	-40 ~ +85	°C
Operating Junction Temperature Range	TJ	-40 ~ +125	°C
Storage Temperature Range	T _{STG}	-65 ~ +150	°C
Thermal Resistance	Ѳјс	325	°C/W
Power Dissipation	P _D	350	mW
Lead Soldering Temperature (260°C)	T_LEAD	10	S

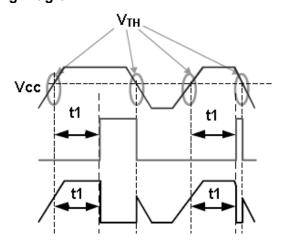
Electrical Characteristics Ta=25°C, unless otherwise specified.


Parameter	Conditions	Symbol	Min	Тур	Max	Unit
Input Supply Voltage	Ta=-40°C~+85°C	V _{CC}	1.0		5.5	V
Supply Current	V _{CC} ≤ V _{TH} * 1.1	I _{CC}			3	
	$V_{IN} = 3V$, Ta=-40°C~+85°C				5	uA
D (T)		V_{TH}	0.985		1.015	
Reset Threshold			V _{TH}		V _{TH}	V
Reset Threshold		V _{TH}	0.97		1.02	
(Full temperature range)			V _{TH}		V _{TH}	V
Reset Threshold		.,			400	,00
Temperature Coefficient		V_{TH}	3-0	50	160	ppm/°C
V _{CC} to Reset Delay	$V_{CC} = V_{TH}$ to $(V_{TH} - 100$ mV $)$	_		40		uS
Reset Active Timeout Period	Ta=-40°C~+85°C	T _{DELAY}	0.5	1.5	5	mS
RESET Output Voltage Low	$V_{CC} < V_{TH(MIN)}$, $I_{SINK} = 1.2 \text{mA}$,	V _{OL}			0.5	V
	V _{CC} > V _{TH(MAX)} , I _{SOURCE} =500uA					
RESET Output Voltage High	V _{CC} > 1.8V					
	V _{CC} > V _{TH(MAX)} , I _{SOURCE} =150uA,	V _{OH}	0.8 V _{CC}			V
	1.8V >= V _{CC} > 1V					

Note 1: The data based on V_{TH} = 2.7V part type. Note 2: Guaranteed by Design



Function Block



Function Description

Typical Application Circuit

Timing Diagram

Electrical Characteristics Curve

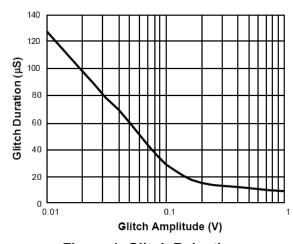


Figure 1. Glitch Rejection

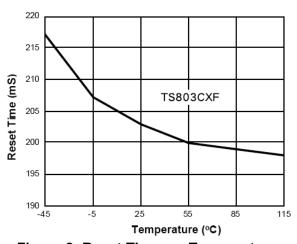


Figure 2. Reset Time vs. Temperature

Electrical Characteristics Curve (Continue)

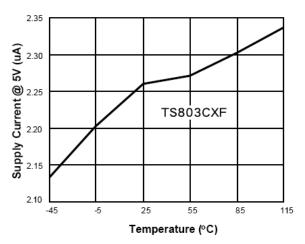


Figure 3. lin vs. Temperature

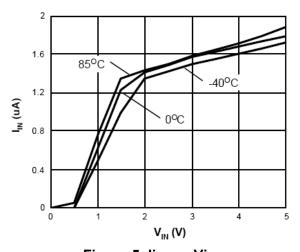


Figure 5. lin vs. Vin

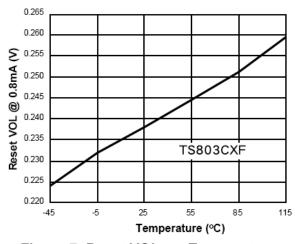


Figure 7. Reset VOL vs. Temperature

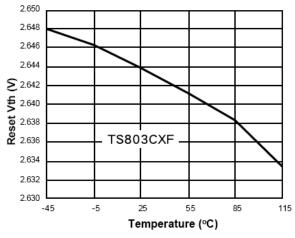


Figure 4. Reset Vth vs. Temperature

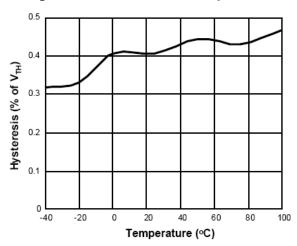
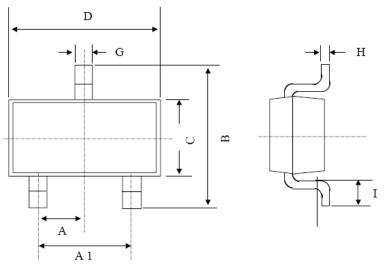
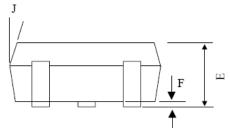



Figure 6. Threshold Hysteresis vs. Temperature



SOT-23 Mechanical Drawing

SOT-23 DIMENSION					
DIM	MILLIMETERS		INCHES		
	MIN	MAX	MIN	MAX.	
Α	0.95	BSC	0.037 BSC		
A1	1.9 I	BSC	0.074	0.074 BSC	
В	2.60	3.00	0.102	0.118	
С	1.40	1.70	0.055	0.067	
D	2.80	3.10	0.110	0.122	
Е	1.00	1.30	0.039	0.051	
F	0.00	0.10	0.000	0.004	
G	0.35	0.50	0.014	0.020	
Н	0.10	0.20	0.004	0.008	
I	0.30	0.60	0.012	0.024	
J	5°	10°	5°	10°	

TS803 Microprocessor Reset Circuit

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.